Abstract:OBJECTIVE: To study the molecular mechanism of apoptosis of leukemic cells (K562 cells) induced by iron chelating agent deferoxamine (DFO). METHODS: The exponentially growing K562 cells were used (1×106/mL) in this study. The K562 cells were treated with different concentrations of DFO (10, 50 and 100 mmol/L), DFO+FeCl3 (10 μmol/L each) or normal saline (blank control). The cellular labile iron pool was measured with a fluorimetric assay using the metalsensitive probe calcein-AM. The viable count and cell viability were determined by typanblue assay. Cell apoptosis was determined by morphological study and flow cytometry assay. Caspase-3 activity in K562 cells was detected by colorimetry. RESULTS: After DFO treatment, the cellular labile iron pool and the viability of K562 cells were reduced and the cell apoptosis increased in a time- and dose-dependent manner compared with the blank control group. The apoptosis rate of K562 cells in the DFO+FeCl3 treatment group was not significantly different from that in the blank control group. The caspase-3 activity in K562 cells increased significantly 24 hrs after 50 and 100 μmmol DFO treatment when compared with the blank control group (P<0.01). There was a negative correlation between cellular labile iron pool and caspase-3 activity of K562 cells (r=-0.894, P<0.05). CONCLUSIONS: DFO induces apoptosis of leukemic cells possibly through decreasing cellular labile iron pool and increasing caspase-3 activity of the cells.