Abstract:Objective To study the effects of 1,25-(OH)2D3 on airway remodeling and expression of high mobility group box 1 (HMGB1) and IL-17 in asthmatic mice. Methods Fifty female mice were randomly divided into 5 groups: control, asthma, low-dose, middle-dose, and high-dose intervention groups (n=10 each). Asthma was induced by intraperitoneal injections of ovalbumin (OVA) and aerosol inhalation of OVA solution. The low-dose, middle-dose, and high-dose intervention groups were administered with 1,25-(OH)2D3 solution at the dosage of 1, 4 and 10 μg/kg respectively by intraperitoneal injections before asthma challenge. The airway structural changes were assessed by hematoxylin and eosin staining. mRNA expression levels of HMGB1 and IL-17 in the lung tissues were evaluated by RT-PCR. The protein levels of HMGB1 and IL-17 in the lung tissues were observed by immunohistochemistry. Results The airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 were higher in the untreated asthma group than in the control group (P<0.05). The airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 were lower in the middle-dose and low-dose intervention groups than in the untreated asthma group, and the middle-dose intervention group demonstrated lower airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 than in the low-dose intervention group (P<0.05). However, the airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 in the high-dose intervention group were higher than in the untreated asthma group (P<0.05). Conclusions HMGB1 and IL-17 may be involved in the airway remodeling process in asthmatic mice. A moderate amount of HMGB1 and IL-17 may be involved in the airway remodeling process in asthmatic mice. A moderate amount of 1,25-(OH)2D3 can improve the airway remodeling, but a higher dose of 1,25-(OH)2D3 may affect adversely the airway remodeling process.