Abstract:Objective To study the role of the PI3K/AKT signaling pathway in the diallyl disulfide (DADS)-induced apoptosis of K562 cells. Methods K562 cells in the logarithmic growth phase were treated with 10, 20, 40, or 80 mg/L DADS for 48 hours, then fixed and stained with acridine orange/ethidium bromide (AO/EB), and examined for cellular morphological changes under an inverted microscope. Annexin V-FITC/PI staining was used for determining the apoptotic rates, and Western blot for measuring the expression of AKT, p-AKT, and Caspase-3. Two control groups, blank and solvent, were used as references. Results K562 cells treated with DADS for 48 hours exhibited the characteristic morphological features of apoptosis including cell shrinkage, irregular cell shape, and membrane blebbing. AO/EB staining results demonstrated that the number of apoptotic cells with cell shrinkage, pyknotic or bead-like nuclei, chromatin condensation, and orange staining increased with the increasing DADS concentration, and 40 mg/L DADS had the most significant effect. The apoptotic rates of cells treated with 10, 20, 40, and 80 mg/L DADS were all significantly higher than those in the control groups (P < 0.05). There were no significant differences in AKT protein expression between the K562 cells treated with different concentrations of DADS; the p-AKT protein expression decreased with the increasing DADS concentration, while the Caspases-3 protein expression increased with the increasing DADS concentration (P < 0.05). Conclusions DADS induces the apoptosis of K562 cells, probably through inhibiting the protein expression in the PI3K/AKT signaling pathway.