学龄前儿童注意缺陷多动障碍决策树预测模型的前瞻性研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省卫生健康中青年骨干人才培养项目(2019-ZQN-21);福建省自然科学基金(2016J01490);福建省妇幼保健院内课题(16-09/16-07)。


A prospective study of the decision tree prediction model for attention deficit hyperactivity disorder in preschool children
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨注意力时间联合行为量表在学龄前儿童注意缺陷多动障碍(attention deficit hyperactivity disorder,ADHD)筛检中的应用价值。 方法 ADHD组来自2019年2月至2020年3月福建省妇幼保健院确诊的学龄前ADHD儿童200例,对照组来自同期同医院或幼儿园体检的儿童200例,记录注意力时间,并使用中文版SNAP-Ⅳ评定量表父母版(Chinese Version of Swanson Nolan and Pelham,Version Ⅳ Scale-Parent Form)评估症状。以临床诊断为金标准,应用决策树分析法,评估注意力时间联合行为量表筛查ADHD的临床应用价值。 结果 ADHD组SNAP-Ⅳ条目1、4、7、8、10、11、14、15、16、18、20、21、22的得分高于对照组(P<0.05),注意力时间短于对照组(P<0.05)。将单因素分析2组间差异有统计学意义的变量作为自变量制定决策树模型,该模型预测ADHD的准确率为81%,预测非ADHD的准确率为69%,总体准确率为75%,受试者工作特征曲线下面积为0.816(95%CI:0.774~0.857,P<0.001)。 结论 基于注意力时间和行为量表建立的学龄前儿童ADHD筛查的决策树模型准确性较高,可用于临床快速进行儿童ADHD初筛,促进开展全人口ADHD筛查与管理。

    Abstract:

    Objective To study the clinical value of attention time combined with behavior scale in the screening of attention deficit hyperactivity disorder (ADHD) in preschool children. Methods A total of 200 preschool children with ADHD diagnosed in Fujian Maternal and Child Health Hospital from February 2019 to March 2020 were enrolled as the ADHD group. A total of 200 children who underwent physical examination in the hospital or kindergartens during the same period were enrolled as the control group. Attention time was recorded. Chinese Version of Swanson Nolan and Pelham, Version IV Scale-Parent Form (SNAP-IV) scale was used to evaluate symptoms. With clinical diagnosis as the gold standard, the decision tree analysis was used to evaluate the clinical value of attention time combined with behavior scale in the screening of ADHD. Results Compared with the control group, the ADHD group had significantly higher scores of SNAP-IV items 1, 4, 7, 8, 10, 11, 14, 15, 16, 18, 20, 21, and 22 (P<0.05) and a significantly shorter attention time (P<0.05). The variables with statistically significant differences between the two groups in univariate analysis were used as independent variables to establish a decision tree model. The accuracy of the model in predicting ADHD was 81%, that in predicting non-ADHD was 69%, and the overall accuracy was 75%, with an area under the ROC curve of 0.816 (95% CI: 0.774-0.857, P<0.001). Conclusions The decision tree model for screening ADHD in preschool children based on attention time and assessment results of behavior scale has a high accuracy and can be used for rapid screening of ADHD among children in clinical practice.

    参考文献
    相似文献
    引证文献
引用本文

黄欣欣,欧萍,钱沁芳,黄艳,王艳霞.学龄前儿童注意缺陷多动障碍决策树预测模型的前瞻性研究[J].中国当代儿科杂志,2022,(3):255-260

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-02
  • 出版日期:
文章二维码
您是第位访问者
ICP:湘ICP备17021739号-4
中国当代儿科杂志 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
管理员登录