doi: 10.7499/j.issn.1008-8830.2017.11.011

论著・临床研究

肺炎支原体肺炎患儿肺炎支原体耐药性与 DNA 载量和基因型的关系研究

张慧芬1 白海涛2 李基明3 谢辉1 王烨3

(1. 厦门市妇幼保健院儿内科,福建厦门 361003; 2. 厦门市第一医院儿内科,福建厦门 361003; 3. 厦门市妇幼保健院检验科,福建厦门 361003)

[摘要] 目的 探讨肺炎支原体(MP)肺炎患儿 MP 耐药情况及其与 DNA 载量和基因型的关系。 方法 选取 2012 年 1 月至 2016 年 12 月诊断为 MP 肺炎的 230 例住院患儿为研究对象,采集所有患儿咽拭子标本,采用快速培养基培养药敏法测定 9 种常用抗菌药物对 MP 临床分离株的药物敏感性;荧光实时定量 PCR 检测患儿咽拭子 MP-DNA 载量; PCR 测序检测 MP 23S rRNA V 区 2063 位基因型。结果 230 例 MP 患儿中,86 例 2063 位基因型为 A(37.4%),134 例为 G(58.3%),8 例为 C(3.5%),2 例为 T(0.9%)。突变基因型(G+C+T) MP-DNA 载量高于野生基因型(A)菌株(P<0.05);红霉素、阿奇霉素、克拉霉素、克林霉素耐药组 MP-DNA 载量高于非耐药组(P<0.05)。MP 对大环内酯类抗生素耐药率较高,60% 以上产生大环内酯类耐药的病例均检测出 A2063G 突变,喹诺酮类药物少见 MP 耐药(低于 2%)。结论 23S rRNA V 区 2063 位点发生基因突变可能导致 MP 对大环内酯类药物耐药和 DNA 载量的变化,可作为 MP 治疗用药的选择依据。

[中国当代儿科杂志, 2017, 19(11): 1180-1184]

[关键词] 肺炎支原体; 耐药性; DNA 载量; 基因型; 儿童

Association of drug resistance of Mycoplasma pneumoniae with DNA load and genotypes in children with Mycoplasma pneumoniae pneumonia

ZHANG Hui-Fen, BAI Hai-Tao, LI Ji-Ming, XIE Hui, WANG Ye. Department of Pediatrics, Xiamen Maternal and Child Health Care Hospital, Xiamen, Fujian 361003, China (Li J-M, Email: lijm2030@sina.com)

Abstract: Objective To investigate the association of drug resistance of Mycoplasma pneumoniae (MP) with DNA load and genotypes in children with MP pneumonia. Methods A total of 230 children who were hospitalized and diagnosed with MP pneumonia between January 2012 and December 2016 were enrolled. Throat swabs were collected from the 230 children, and a rapid drug sensitivity assay was used to determine the sensitivity of clinical isolates of MP to nine commonly used antibacterial agents. Quantitative real-time PCR was used to measure MP-DNA load in throat swabs. PCR sequencing was used to determine the genotype of 2063 locus of the MP 23S rRNA V domain. Results Of the 230 children, 86 (37.4%) had genotype A in 2063 locus, 134 (58.3%) had genotype G, 8 (3.5%) had genotype C, and 2 (0.9%) had genotype T. Mutant strains (genotype G+C+T) had a significantly higher MP-DNA load than wild-type strains (genotype A) (*P*<0.05). The strains resistant to erythromycin, azithromycin, clarithromycin, and clindamycin had a significantly higher MP-DNA load than non-resistant strains (*P*<0.05). MP had a high drug resistance rate to macrolide antibiotics. More than 60% of the cases with resistance to macrolides were found to have A2063G mutations. MP was rarely resistant to quinolones (less than 2%). Conclusions Mutations in 2063 locus of the MP 23S rRNA V domain may result in the resistance of MP to macrolides and the change in DNA load and can be used as a basis for selecting drugs for MP.

Key words: Mycoplasma pneumoniae; Drug resistance; DNA load; Genotype; Child

[[] 收稿日期] 2017-07-20; [接受日期] 2017-09-14

[[]基金项目]厦门市科技局计划项目(3502Z20144048)。

[[]作者简介]张慧芬,女,本科,副主任医师。

[[]通信作者] 李基明, 男, 副主任技师。

肺炎支原体 (Mycoplasma pneumoniae, MP) 是儿童呼吸道疾病常见的病原体之一,治疗上主 要采用大环内酯类抗生素。近年来, MP 对大环内 酯类抗生素耐药性日趋严重, 目全世界各地耐药 率存在差异^[1]。目前认为其耐药机制主要与23S rRNA V 区基因位点突变(2063位和2064位)相 关[2-5]。耐药位点基因型是抗生素治疗 MP 是否产 生耐药性的重要决定因素,而 MP 定量检测是 MP 诊断和抗生素治疗疗效评价的重要指标。目前对 于 MP 耐药性与 MP-DNA 载量和耐药位点基因型 的关系的相关研究暂为空白。本研究对 MP 感染患 儿耐药性与 MP-DNA 载量和 23S rRNA V 区基因位 点基因型的关系进行研究,以加强 MP 的耐药性及 流行基因型的监测,有助于了解 MP 的流行病学特 点,同时为新型抗生素及疫苗的研发提供依据, 现报告如下。

1 资料与方法

1.1 研究对象

选取 2012 年 1 月至 2016 年 12 月于厦门市妇 幼保健院住院的 MP 肺炎患儿 230 例为研究对象,其中男 122 例,女 108 例,年龄 1 岁 3 个月至 8 岁 3 个月,平均年龄 4.8 ± 1.9 岁。所有患儿的诊断和疗效判断参照 MP 肺炎临床路径 [6],同时本研究获得医院医学伦理委员会批准。

1.2 肺炎支原体培养及药敏鉴定

采集所有患儿咽拭子标本,在药敏板阴性孔中加入 100 μL 快速 MP 培养基(试剂盒由陕西百盛园生物科技信息有限公司提供),然后将采集的咽拭子标本在培养基中搅匀后加入各药敏板中,置于 37℃培养箱 24 h。药敏板中含有 9 种抗生素(红霉素、阿奇霉素、罗红霉素、克拉霉素、乙酰螺旋霉素、克林霉素、左氧氟沙星、加替沙星、司帕沙星),利用抗生素的高低浓度在体外对微生物生长的抑制作用,对微生物作耐药性分析。若双药敏板孔均保持红色则为对该抗生素敏感,双孔一红一黄则为中介,双孔均变黄色则为对该抗生素耐药。

1.3 MP-DNA 载量检测

用 FQ-PCR 法 检测 MP-DNA 载量, 试剂 盒由中山大学达安基因股份有限公司提供。应用

PE5700 型基因检测系统进行 PCR 扩增及数据处理。PCR 循环条件为: 93 $^{\circ}$ 2 min; 93 $^{\circ}$ 45 s, 55 $^{\circ}$ 60 s, 共 10 个循环; 93 $^{\circ}$ 30 s, 55 $^{\circ}$ 45 s, 共 30 个循环; 具体按说明书操作。以 H 肌动蛋白 DNA(H actin-DNA)含量作为内参,引物、探针由上海英潍捷基公司合成。引物序列为: F: 5'-ACCGAGCGCGGCTACAG-3', R: 5'-CTTAATGTCACGCACGATTTCC-3', 探针序列为: 5'-TTCACCACCACGGCCGAGC-3'。 PCR 循环条件为: 94 $^{\circ}$ 4 min; 93 $^{\circ}$ 30 s, 60 $^{\circ}$ 30 s, 共 40 个循环。计算阳性样本 MP 的相对定量值,即 MP 载量指数(Mycoplasma pneumoniae load index, MPLI)=-lg (MP-DNA 拷贝量/H actin-DNA 拷贝量) $^{\circ}$

1.4 23S rRNA V 区 PCR 扩增及序列测定

参考 Lucier 等 ^[8] 报道扩增 23S rRNA V 区的引物序列,由上海英滩捷基公司合成。上游引物序列: 5'-ACTATAACGGTCCTAAGGTA-3',下游引物序列: 5'-ACCTATTCTCTACATGATAA-3'。 PCR 反应条件: 95℃预变性 5 min; 94℃变性 15 s, 52℃ 退火 30 s, 72℃延伸 30 s, 共 35 个循环; 72℃终延伸 10 min; 4℃保存。取 5 μL PCR 产物用 1% 琼脂糖凝胶电泳检测。电泳结果良好,有单一产物带,PCR 产物直接回收纯化,并测序。测序结果与基因库的参考序列进行比对,确定 23S rRNA V区 2063 位基因型。

1.5 统计学分析

采用 SPSS 17.0 统计学软件对数据进行统计学分析,正态分布计量资料以均数 \pm 标准差($\bar{x}\pm s$)表示,两组间比较采用 t 检验,多组间比较采用单因素方差分析。计数资料采用百分率(%)表示,组间比较采用卡方检验。P<0.05 为差异有统计学意义。

2 结果

2.1 MP 肺炎患儿的耐药情况

对 230 例 MP 肺炎患儿行快速 MP 培养药敏试验,其中红霉素、罗红霉素耐药率较高,在70%以上;乙酰螺旋霉素和克林霉素耐药率也在 50% 以上;阿奇霉素和克拉霉素耐药率相对较低(20%~35%);喹诺酮类抗生素(左氧氟沙星、加替沙星和司帕沙星)少见 MP 耐药(低于2%)。见表 1。

表 1 230 例患儿 MP 培养药敏结果 [例(%)]

药物	敏感	中介	耐药	
红霉素	34(14.8)	34(14.8)	162(70.4)	
阿奇霉素	130(56.5)	44(19.1)	56(24.4)	
罗红霉素	38(16.5)	24(10.4)	168(73.0)	
克拉霉素	96(41.7)	54(23.5)	80(34.8)	
乙酰螺旋霉素	48(20.9)	62(26.9)	120(52.2)	
克林霉素	54(23.5)	48(20.9)	128(55.6)	
左氧氟沙星	224(97.4)	2(0.9)	4(1.7)	
加替沙星	220(95.7)	6(2.6)	4(1.7)	
司帕沙星	226(98.3)	4(1.7)	0(0)	

2.2 MP 对不同抗生素耐药性与 MP-DNA 载量的 关系

根据每种药物的药敏试验结果,将药敏结果为耐药的病例纳入耐药组,将药敏结果为敏感或中介的病例纳入非耐药组,比较两组 MPLI。耐药组 MPLI 均低于非耐药组,即耐药组 MP-DNA 载量高于非耐药组,其中红霉素、阿奇霉素、克拉霉素、克林霉素耐药组与非耐药组 MPLI 比较差异有统计学意义(P<0.05),而罗红霉素、乙酰螺旋霉素、左氧氟沙星、加替沙星耐药组与非耐药组 MPLI 比较差异无统计学意义(P>0.05),见表 2。

表 2 不同抗生素耐药组与非耐药组 MPLI 比较 $(\bar{x} \pm s)$

抗生素	耐药组	非耐药组	t 值	P 值
红霉素	3.58 ± 0.68 ($n=162$)	4.24 ± 1.02 (<i>n</i> =68)	8.271	0.004
阿奇霉素	3.13 ± 0.49 ($n=56$)	3.98 ± 0.96 ($n=174$)	10.283	0.001
罗红霉素	3.59 ± 0.81 ($n=168$)	4.27 ± 1.21 $(n=62)$	0.668	0.414
克拉霉素	3.25 ± 0.42 ($n=80$)	4.09 ± 0.84 ($n=150$)	6.244	0.013
乙酰螺旋霉素	3.47 ± 0.60 ($n=120$)	4.10 ± 0.59 ($n=110$)	2.537	0.112
克林霉素	3.48 ± 0.55 $(n=128)$	4.14 ± 0.25 ($n=102$)	10.353	0.001
左氧氟沙星	3.95 ± 1.18 (n=4)	4.16 ± 0.82 $(n=226)$	0.455	0.500
加替沙星	3.22 ± 0.36 (n=4)	3.73 ± 0.43 ($n=226$)	0.166	0.684

2.3 MP 对不同抗生素耐药性与 23S rRNA V 区 2063 位基因型的关系

比较对 9 种抗生素耐药的病例 MP 23S rRNA V区 2063 位基因型(野生基因型为 A型),可见 2063 位 A → G 突变对大环内酯类抗生素耐药影响较大,60% 以上产生大环内酯类药物耐药的病例均检测出 2063 位点 G 突变。2063 位点 A、G 基因型产生喹诺酮类药物耐药的例数相同。见表 3。

表 3 MP 23S rRNA V 区 2063 位基因型与抗生素耐药性的关系 [例(%)]

药物	耐药总例数 -	23S rRNA V 区 2063 位基因型			- χ² 值	P 值	
		A	С	G	T	· // 但	F 旧.
红霉素	162	46(28.4)	6(3.7)	108(66.7)	2(1.2)	19.42	< 0.01
阿奇霉素	56	6(10.7)	4(7.1)	46(82.1)	0(0)	24.84	< 0.01
罗红霉素	168	52(31.0)	6(3.6)	108(64.3)	2(1.2)	11.55	0.009
克拉霉素	80	16(20.0)	2(2.5)	62(77.5)	0(0)	19.12	< 0.01
乙酰螺旋霉素	120	36(30.0)	4(3.3)	78(65.0)	2(1.7)	7.47	0.058
克林霉素	128	36(28.1)	4(3.1)	86(67.2)	2(1.6)	12.27	0.007
左氧氟沙星	4	2(50.0)	0(0)	2(50.0)	0(0)	0.40	0.941
加替沙星	4	2(50.0)	0(0)	2(50.0)	0(0)	0.40	0.941

2.4 MP-DNA 载量与 23S rRNA V 区 2063 位基 因型的关系

检测 230 例 MP 肺炎患儿 23S rRNA V 区 2063 位基因型,其中 86 例为 A 型 (37.4%),134 例为 G 型 (58.3%),8 例为 C 型 (3.5%),2 例为 T型 (0.9%)。根据 23S rRNA V 区 2063 位基因型结果把 230 例 MP 肺炎患儿分成野生型组(基因型为 A)和突变型组(基因型为 C、G和 T)。比较

两组的平均 MPLI, 突变型组 MPLI(3.2 ± 0.6) 低于野生型组(4.1 ± 0.6)(t=10.310, P=0.001), 即突变型组患儿 MP-DNA 载量高于野生型组。

2.5 MP-DNA 载量与 23S rRNA V 区 2063 位突 变基因型的关系

23S rRNA V 区 2063 位基因突变为 C、G、T 的患儿的 MPLI 分别为 3.1 ± 0.5 、 3.4 ± 0.6 、 3.2 ± 0.8 , 差异无统计学意义(F=0.98,P=0.507)。

3 讨论

研究表明 MP 是引起社区获得性呼吸道感染 的主要病原体之一, 好发于学龄儿童和青少年, 近年 MP 感染日益增多,难治性 MP 肺炎在临床愈 加常见, MP 耐药是导致其难治的主要原因之一。 由于 MP 缺乏细胞壁, 其对如 β- 内酰胺类等作用 于细胞壁合成的抗生素天然耐药,鉴于儿童生长 发育及骨骼、牙齿等发育特性, 限制了四环素类 和喹诺酮类抗生素在儿童中的应用,因此,大环 内酯类常作为 MP 治疗的首选药物。目前数据显示 我国儿童及成人患者分离到的 MP 临床菌株对大环 内酯类抗生素具有较高的耐药性, 上海、北京等 地耐药率在69%~97%,并且逐年上升[9-11]。迄今 为止,厦门地区儿童的 MP 耐药性尚未有报道。本 研究采用快速 MP 培养药敏法测定了 9 种抗生素对 MP 临床分离株的药物敏感性。结果显示, 左氧氟 沙星等喹诺酮类对 MP 具有良好的体外抗微生物活 性作用; MP 临床分离株对红霉素、罗红霉素的敏 感性低, 耐药率分别是 70.4% 和 73.0%; MP 对乙 酰螺旋霉素和克林霉素的敏感性也明显下降,但 耐药率低于红霉素,分别是52.2%和55.6%;MP 对阿奇霉素和克拉霉素耐药性低于其他大环内酯 类, 分别是 24.4% 和 34.8%。

既往研究显示, MP 对大环内酯类抗生素的耐 药机制主要为核糖体 50S 亚单位 23S rRNA 结构域 V区和Ⅱ区核苷酸序列改变导致抗生素与核糖体 亲和力下降,从而导致耐药[12]。目前有文献报道 的影响 MP 对大环内酯类抗生素耐药性的位点最常 见的是 V 区的 2063 位点, 2064、2067、2617 位点 也有个别报道;还有研究表明核糖体蛋白 L4、L22 基因位点突变也会影响大环内酯类抗生素耐药性 的产生[13]。此外,药物的主动外排系统也可能导 致 MP产生耐药。本研究对 MP 23S rRNA V 区进行 扩增、产物测序,重点分析最常见报道的 2063 位 点突变情况。结果显示, 162 株红霉素耐药 MP 临 床株中, 71.6% 存在 23S rRNA V 区 2063 位点突变, 其中 108 例为 A2063G 突变, 占 66.7%; 46 例为野 生型 A 型, 占 28.4%; 6 例为 A2063C 突变, 占 3.7%; 2 例为 A2063T 突变,占 1.2%。红霉素敏感株均不 存在 23S rRNA V 区 2063 位点突变。其他大环内 酯类抗生素耐药 MP 临床株中 23S rRNA V 区 2063 位点基因型分布亦类似。

MP-DNA 载量客观反映了 MP 与宿主免疫清除 能力之间的平衡。MP 突变位点基因型与 MP-DNA 载量间的关系目前未见报道。对于临床上耐药 MP 菌株的基因型的研究,目前常用的分型方法有: 基于黏附蛋白 P1 基因的 2 个基本重复区域差异, 通过 PCR-RFLP 技术将 MP 分为 P1 基因型 I 和 Ⅱ 两种基因型;采用 MLVA 技术,通过 MP 基因组 中可变数量串联重复序列拷贝数的差异这一特征 来实现分型[14-17]。但是上述两种分型方法均存在与 MP 耐药相关性不明确等问题[18]。本研究选择了 对 MP 耐药性影响较明确的 23S rRNA V 区 2063 位 点基因型作为分型依据。分型结果显示, MP 23S rRNA V 区 2063 位点是否发生突变, 其 MP-DNA 载量比较差异有统计学意义。而突变成何种碱基, MP-DNA 载量比较差异无统计学意义,三种突变基 因型均提高 MP 对大环内酯类抗生素的耐药性,而 对喹诺酮类抗生素耐药性未见影响。感染者间的 MP-DNA 载量如果存在明显差异是由于 MP 核糖体 23S rRNA V 区 2063 位不同基因型改变, 影响抗生 素与核糖体亲和力,从而导致耐药,敏感株的增 殖受到抑制而耐药株不受抑制,因此 MP-DNA 载 量上升。而喹诺酮类抗生素对 MP 作用靶点不同, 其通过嵌入断裂 DNA 链中间,形成 DNA- 拓扑异 构酶 - 喹诺酮类三者复合物, 阻止 DNA 拓扑异构 变化,妨碍 MP-DNA 复制、转录,以达到杀灭病 原体的目的[19]。因此 23S rRNA 位点突变与喹诺酮 类抗生素耐药性可能不存在相关性。

综上所述,MP临床分离株对大环内酯类耐药率较高,对喹诺酮类抗生素敏感性较高。23S rRNA V 区 2063 位点基因型发生突变可能影响 MP耐药的产生和 DNA 载量的变化,可作为 MP治疗用药的选择依据。由于本研究仅涉及 MP耐药中最常见的 23S rRNA V 区 2063 位点,对于这些耐药菌株是否存在其他突变位点,或其他机制导致耐药,需要进行分离株间的 23S rRNA 同源性分析,以及其他基因如核糖体 L4、L22 等的 PCR 扩增及测序鉴定以进一步明确。另外,本研究仅对红霉素、阿奇霉素、罗红霉素、克拉霉素等 6 种大环内酯类及左氧氟沙星等 3 种喹诺酮类抗生素测定敏感性,而未覆盖如四环素类抗生素及大环内酯、喹诺酮类中的其他抗生素。需要进一步了解 MP 对更

多抗生素,尤其是新型抗生素药物的敏感性情况,进行分子流行病学研究,并开展新型抗生素药物对 MP 的药效学评价工作。

[参考文献]

- [1] 辛德莉, 史大伟. 耐药肺炎支原体感染的抗生素治疗进展 [J]. 中华实用儿科临床杂志, 2013, 28(22): 1695-1697.
- [2] 郑杨,崔红.肺炎支原体耐药机制的研究现状[J].中国医刊, 2009,44(12):18-20.
- [3] 辛德莉,韩旭,糜祖煌,等.肺炎支原体对大环内酯类抗 生素耐药性及耐药机制研究[J].中华检验医学杂志,2008, 31(5):543-546.
- [4] 冯真英,叶少玲,陈文兴,等.肺炎支原体对大环内酯类抗 生素耐药性及耐药机制研究[J].中国现代药物应用,2016, 10(13):137-139.
- [5] 孔洁,陈友国,管敏昌,等.肺炎支原体 23S rRNA 耐药基因 2063 位点阳性的肺炎支原体肺炎患儿临床特征及 BALF 中 IL-8 表达 [J]. 中国卫生检验杂志, 2016, 26(23): 3385-3388
- [6] 中华人民共和国国家卫生和计划生育委员会.卫生部办公厅 关于印发小儿内科 4 个病种临床路径的通知 [DB/OL]. (2009– 10–16)[2017–03–20]. http://www.nhfpc.gov.cn/yzygj/s3585u/20 0910/81422313e01b45fd90a2f633d748e946.shtml.
- [7] 张瑾, 胡大康. 肺炎支原体载量指数在儿童肺炎支原体感染 诊断中的应用[J]. 中华医院感染学杂志, 2009, 19(12): 1613-1615.
- [8] Lucier TS, Heitzman K, Liu SK, et al. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae[J]. Antimicrob Agents Chemother, 1995, 39(12): 2770-2773.
- [9] Xin D, Mi Z, Han X, et al. Molecular mechanisms of macrolide resistance in clinical isolates of Mycoplasma pneumoniae from China[J]. Antimicrob Agents Chemother, 2009, 53(5): 2158-2159.
- [10] Zhao F, Liu G, Wu J, et al. Surveillance of macrolide-resistant Mycoplasma pneumoniae in Beijing, China, from 2008 to 2012[J]. Antimicrob Agents Chemother, 2013, 57(3): 1521-

1523

- [11] Cao B, Zhao CJ, Yin YD, et al. High prevalence of macrolide resistance in Mycoplasma pneumoniae isolates from adult and adolescent patients with respiratory tract infection in China[J]. Clin Infect Dis, 2010, 51(2): 189-194.
- [12] Wang Y, Qiu S, Yang G, et al. An outbreak of Mycoplasma pneumoniae caused by a macrolide-resistant isolate in a nursery school in China[J]. Antimicrob Agents Chemother, 2012, 56(7): 3748-3752.
- [13] Pereyre S, Guyot C, Renaudin H, et al. In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumoniae[J]. Antimicrob Agents Chemother, 2004, 48(2): 460-465.
- [14] Diaz MH, Benitez AJ, Cross KE, et al. Molecular detection and characterization of Mycoplasma pneumoniae among patients hospitalized with community-acquired pneumonia in the United States[J]. Open Forum Infect Dis, 2015, 2(3): ofv106.
- [15] Yan C, Sun H, Xue G, et al. A single-tube multiple-locus variable-number tandem-repeat analysis of Mycoplasma pneumoniae clinical specimens by use of multiplex PCRcapillary electrophoresis[J]. J Clin Microbiol, 2014, 52(12): 4168-4171.
- [16] Xue G, Wang Q, Yan C, et al. Molecular characterizations of PCR-positive Mycoplasma pneumoniae specimens collected from Australia and China[J]. J Clin Microbiol, 2014, 52(5): 1478-1482
- [17] Qu J, Yu X, Liu Y, et al. Specific multilocus variablenumber tandem-repeat analysis genotypes of Mycoplasma pneumoniae are associated with diseases severity and macrolide susceptibility[J]. PLoS One, 2013, 8(12): e82174.
- [18] Tian XJ, Dong YQ, Dong XP, et al. P1 gene of Mycoplasma pneumoniae in clinical isolates collected in Beijing in 2010 and relationship between genotyping and macrolide resistance[J]. Chin Med J (Engl), 2013, 126(20): 3944-3948.
- [19] Aldred KJ, Kerns RJ, Osheroff N, et al. Mechanism of quinolone action and resistance[J]. Biochemistry, 2014, 53(10): 1565-1574.

(本文编辑:万静)