doi: 10.7499/j.issn.1008-8830.2018.12.003

论著・临床研究

足月新生儿β地中海贫血基因携带者 筛查指标及 cut-off 值的研究

杨金玲 蔡稔 陈大宇 谭建强 黄丽华

(柳州市妇幼保健院医学遗传科/柳州市出生缺陷预防与控制重点实验室,广西柳州 545001)

[摘要] 目的 探讨足月新生儿β地中海贫血(β地贫)基因携带者的筛查指标及其 cut-off 值。 方法 对进行β地贫筛查(新生儿足跟血滤纸干血片血红蛋白分析和 17 种β珠蛋白基因突变检测)的 1193例足月新生儿的资料进行回顾性分析,将筛查指标水平与β地贫基因携带的相关性进行多因素 logistic 回归分析,并进行筛查指标对β地贫基因携带诊断价值的受试者工作特征曲线(ROC)分析。结果 1193例中β地贫基因携带者 638 例。HbA₂为0的637例(53.39%)中携带β地贫基因的310例、β地贫基因阴性327例;HbA₂不为0的556例(46.61%)中携带β地贫基因的328例、β地贫基因阴性228例。HbA₂为0者,与β地贫基因阴性组比较,β地贫基因携带组的HbA含量较低、HbF含量较高,差异有统计学意义(P<0.01);HbA₂不为0者,与β地贫基因阴性组比较,β地贫基因携带组的HbA含量较低、HbF及HbA₂/HbA比较高,差异有统计学意义(P<0.01)。HbA₂为0者,HbA、出生胎龄及两者联合对β地贫基因携带诊断的ROC曲线分析的AUC分别为0.865、0.515、0.870,其中HbA及HbA联合出生胎龄的AUC相近,均具有诊断意义(P<0.01)。HbA₂不为0者,HbA、HbA₂/HbA比及两者联合对β地贫基因携带诊断的ROC曲线分析的AUC分别为0.943、0.885、0.978,均具有诊断意义(P<0.01),以两者联合对β地贫基因携带诊断的ROC曲线分析的AUC分别为0.943、0.885、0.978,均具有诊断意义(P<0.01),以两者联合对β地贫基因携带诊断的ROC曲线分析的AUC分别为11.6%时对β地贫基因携带诊断的ROC曲线的AUC最大,灵敏度为91.38%、特异度91.89%。结论 HbA及HbA₂/HbA比是筛查足月新生儿β地贫基因携带的有效指标。

[中国当代儿科杂志, 2018, 20(12): 990-993]

[关键词] β地中海贫血;基因携带者;受试者工作特征曲线;足月新生儿

Screening indices and their cut-off values for full-term neonates carrying β -thalassemia gene

YANG Jin-Ling, CAI Ren, CHEN Da-Yu, TAN Jian-Qiang, HUANG Li-Hua. Department of Medical Genetics, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, Guangxi 545001, China (Cai R, Email: lzcairen@126.com)

Abstract: Objective To investigate the screening indices and their cut-off values for full-term neonates carrying β -thalassemia gene. Methods A retrospective analysis was performed for the clinical data of 1193 full-term neonates who underwent β -thalassemia screening (hemoglobin analysis with dried blood spots on neonatal heel blood filter paper and mutation detection of 17 β -globin genes). A multivariate logistic regression analysis was used to investigate the association between screening indices and β -thalassemia gene, and the receiver operating characteristic (ROC) curve was used to analyze the value of screening indices in determining the presence or absence of β -thalassemia gene. Results Of the 1193 neonates, 638 carried β -thalassemia gene of the 1193 neonates, 637 (53.39%) had no HbA₂, among whom 310 carried β -thalassemia gene and 327 did not carry this gene; 556 (46.61%) had HbA₂, among whom 328 carried β -thalassemia gene and 228 did not carry this gene. As for the neonates without HbA₂, the β -thalassemia gene group had a significantly lower HbA level and a significantly higher HbF level than the β -thalassemia gene-negative group (P<0.01).

[[] 收稿日期] 2018-06-21; [接受日期] 2018-11-09

[[]基金项目] 国家自然科学基金项目(81360091);卫生行业科研专项项目(201202017);广西医疗卫生课题资助项目(Z2015189)。

[[]作者简介]杨金玲,女,硕士,主管技师。

[[]通信作者] 蔡稔,女,主任技师。

As for the neonates with HbA₂, the β-thalassemia gene group had a significantly lower HbA level and significantly higher HbF and HbA₂/HbA ratio than the β-thalassemia gene-negative group (P<0.01). In the neonates without HbA₂, HbA, gestational age, and HbA combined with gestational age had an area under the ROC curve (AUC) of 0.865, 0.515, and 0.870, respectively, in determining the presence or absence of β-thalassemia gene (P<0.01), and HbA and HbA combined with gestational age had a similar AUC and a certain diagnostic value. In the neonates with HbA₂, HbA, HbA₂/HbA ratio, and HbA combined with HbA₂/HbA ratio had an AUC of 0.943, 0.885, and 0.978, respectively, in determining the presence or absence of β-thalassemia gene. The HbA combined with HbA₂/HbA ratio had the largest AUC. In the neonates without HbA₂, HbA had the largest AUC in determining the presence or absence of β-thalassemia gene at the cut-off value of 11.6%, with a sensitivity of 85.81% and a specificity of 79.82%. In the neonates with HbA₂, an HbA of 16.1%-22.0% and an HbA₂/HbA ratio of >1.4 had the largest AUC in determining the presence or absence of β-thalassemia gene, with a sensitivity of 91.38% and a specificity of 91.89%. **Conclusions** HbA and HbA₂/HbA ratio are effective indices for screening out full-term neonates carrying β-thalassemia gene.

[Chin J Contemp Pediatr, 2018, 20(12): 990-993]

Key words: β-Thalassemia; Gene carrier; Receiver operating characteristic curve; Full-term neonate

β地中海贫血(简称β地贫)是由于位于第 11号染色体的β-珠蛋白基因决定簇发生点突变或 缺失导致 β-珠蛋白肽链合成部分减少(β+)或缺 失 $(\beta 0)$ 以及 α/β 链比例失衡而产生的溶血性贫血, 是我国南方最常见的单基因遗传病[1-2]。β地贫基 因携带者只涉及一个β珠蛋白基因缺陷,有一个 正常的β珠蛋白基因,能够合成β-珠蛋白链,多 无临床症状,但在新生儿期和儿童期可能于某些 诱因下出现急性溶血发作而影响生长发育。目前 对于新生儿期β地贫基因携带者的筛查缺乏有效 指标,以血常规参数作为初筛指标灵敏度及特异 度不高^[3]; 胎儿或新生儿脐带血的 HbA 亦可辅助 筛查β地贫基因携带者,但HbA的含量存在出生 胎龄依赖性,而实验室通常使用单一的 HbA 水平 作为截断值,灵敏度较差[4-6]。本研究对进行β地 贫筛查的 1193 例足月新生儿进行回顾性分析,探 讨足月新生儿β地贫基因携带的筛查方法。

1 资料与方法

1.1 研究对象

以 2013 年 1 月至 2017 年 7 月柳州市妇幼保健院新生儿疾病筛查中心进行 β 地贫筛查,并排除了中重度 β 地贫、伴有其它异常血红蛋白、采集标本前已行输血以及出生资料不全的 1193 例足月新生儿为研究对象。

1193 例中 β 地贫基因携带者 638 例,基因阴性的 555 例。 HbA_2 为 0 的 637 例中根据基因检测结果分为 β 地贫基因携带组(310 例)、基因阴性组(327 例); HbA_2 不为 0 的 556 例中 β 地贫基因携带组 328 例,基因阴性组 228 例。

1.2 β- 地中海贫血筛查

出生72 h 后采集足跟血,滴于S&S903 新生儿筛查专用滤纸,5个工作日内送检,使用CAPILLARYS 2 NEONAT FAST 全自动毛细管电泳技术进行血红蛋白分析。使用深圳益生堂生物企业有限公司β地贫基因检测试剂盒检测中国人群常见的17种β珠蛋白基因突变。

1.3 统计学分析

采用 SPSS 20.0 和 MedCal 3.0 软件进行数据处理。正态分布的计量资料以均数 ± 标准差(\bar{x} ± s)表示,组间比较采用两独立样本 t 检验;非正态分布的计量资料采用中位数四分位数 [P_{50} (P_{25} , P_{75})]表示,组间比较采用 Mann—Whitney U 检验。计数资料以率(%)表示,两组间比较采用 χ^2 检验。并进行筛查指标与 β 地贫基因携带的 logistic 回归分析;以及筛查指标对 β 地贫基因携带诊断的受试者工作特征曲线(receiver operating characteristic curve, ROC)分析。P<0.05 为差异有统计学意义。

2 结果

2.1 β 地贫基因携带与基因阴性组新生儿的比较

HbA₂为 0 时,β 地贫基因携带组与基因阴性组在性别、出生胎龄及体重方面的差异无统计学意义(P>0.05),β 地贫基因携带组的 HbA 含量较低、HbF 含量较高(P<0.01),见表 1。HbA₂不为 0 者,β 地贫基因携带组与基因阴性组在性别、出生胎龄、体重及 HbA₂含量方面的差异无统计学意义(P>0.05),β 地贫基因携带组的 HbA 含量较低、HbF 及 HbA₂/HbA 比较高(P<0.01),见表 2。

第20卷第12期

表 1 HbA₂ 为 0 者 β 地贫基因携带与基因阴性组的比较

参数	β地贫基因 阴性组 (n=327)	β地贫基因 携带组 (n=310)	t(\chi²) 值	P值
男性 [n(%)]	161(49.24)	174(56.13)	(3.033)	0.082
出生胎龄 $(\bar{x} \pm s, \mathbb{B})$	38.6 ± 1.1	38.6 ± 1.1	0.4	0.69
出生体重 (x ± s, g)	3146 ± 393	3133 ± 390	0.436	0.663
$\mathrm{HbA}\;(\overline{x}\pm s,\%)$	15 ± 6	8 ± 3	19.259	< 0.001
$\mathrm{HbF}(\overline{x}\pm s,\%)$	84 ± 6	91 ± 4	-15.926	< 0.001

表 2 HbA₂ 不为 0 者 β 地贫基因携带与基因阴性组的比较

参数	β地贫基因 阴性组 (n=228)	β地贫基 因携带组 (n=328)	t(χ²)[Z] 值	P值
男性 [n(%)]	116(50.88)	189(57.62)	(2.471)	0.116
出生胎龄 $(\bar{x} \pm s, \mathbb{B})$	39.4 ± 1.0	39.3 ± 1.0	1.149	0.251
出生体重 $(\bar{x} \pm s, g)$	3236 ± 393	3268 ± 392	-0.95	0.342
$\mathrm{HbA}\;(\overline{x}\pm s,\%)$	24 ± 6	13 ± 4	21.717	< 0.001
$\mathrm{HbF}\;(\overline{x}\pm s,\%)$	75 ± 7	86 ± 5	-18.452	< 0.001
$\mathrm{HbA}_2\left[P_{50}(P_{25},P_{75})\right]$	0.2(0.2, 0.3)	0.3(0.2,0.4)	[-2.627]	< 0.009
${ m HbA}_2/{ m HbA}~[P_{50}(P_{25},P_{75})]$	1.0(0.7,1.3)	2.1(1.6,2.6)	[-15.5345]	< 0.001

2.2 筛查指标与 β 地贫基因携带相关性的 logistic 回归分析

因 HbA 与 HbF 具有共线性,本研究纳入更常用的 HbA。据文献 [7-8] 新生儿 HbA 的含量与胎龄有相关性,因此将 HbA、HbA₂/HbA 比及出生胎龄纳入回归分析,结果显示:对于 HbA₂ 为 0 的足月新生儿,出生胎龄及 HbA 可作为筛查 β 地贫基因携带的指标;HbA₂ 不为 0 者,HbA 和 HbA₂/HbA 比可作为 β 地贫的筛查指标。见表 3。

表 3 筛查指标与 β 地贫基因携带相关性的 logistic 回归 分析

参数	В	SE	OR (95%CI)	P值
HbA ₂ 为0者				
出生胎龄	0.37	0.10	1.46(1.19~1.78)	< 0.001
HbA	-0.41	0.03	0.66(0.62~0.71)	< 0.001
HbA ₂ 不为 0 者				
出生胎龄	0.16	0.17	1.12(0.84~1.64)	0.598
HbA	-0.42	0.04	0.66(0.61~0.71)	< 0.001
HbA ₂ /HbA	2.45	0.29	11.61(6.56~20.54)	< 0.001

2.3 筛查指标对 β 地贫基因携带诊断的 ROC 曲线分析

HbA。为0者, HbA、出生胎龄及两者联合对

β 地贫基因携带诊断的 ROC 曲线分析的 AUC 分别为 0.865、0.515、0.870, 其中 HbA 及 HbA 联合出生胎龄的 AUC 相近,均具有诊断意义 (P<0.01); HbA₂不为 0 者,HbA、HbA₂/HbA 及两者联合对β 地贫基因携带诊断的 ROC 曲线分析的 AUC 分别为 0.943、0.885、0.978 (P<0.01),以 HbA 与 HbA₂/HbA 联合的 AUC 最大。见图 1、图 2。

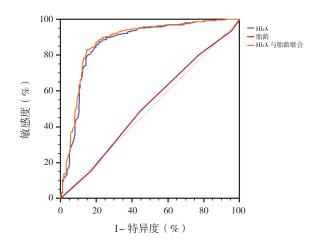


图 1 HbA_2 为 0 者筛查指标对 β 地贫基因携带诊断的 ROC 曲线分析

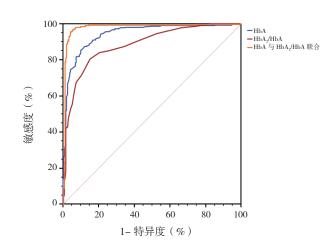


图 2 HbA_2 不为 0 者筛查指标对 β 地贫基因携带诊断 的 ROC 曲线分析

HbA₂ 为 0 者, HbA 的 最 佳 cut-off 值 为 \leq 11.6%, 灵敏度 85.81%、特异度 79.82%; HbA₂ 不 为 0 者, HbA 为 16.1%~22.0%、HbA₂/HbA 比 >1.4 对 β 地贫基因携带诊断 ROC 曲线的 AUC 最大, 灵敏度 91.38%、特异度 91.89%。见表 4。

表 4 筛查指标对 β 地贫基因携带诊断的 ROC 曲线分析的 cut-off 值

HbA (%)	HbA ₂ /HbA	灵敏度 (%)	特异度 (%)	AUC
≤ 11.6	0	85.81	79.82	0.865
11.7~12.0	>1	81.48	100	0.933
12.1~16.0	>1.2	95.35	76.92	0.843
16.1~22.0	>1.4	91.38	91.89	0.967
>22.1	>2.2	83.33	99.27	0.849

3 讨论

β地贫是由于β珠蛋白基因发生缺失或突变, 导致 β 肽链合成减少,因此 $HbA(α_2β_2)$ 含量降低 而 HbF、HbA。含量相对增加的一种遗传性溶血性 贫血。β地贫基因携带者通常无临床症状,只涉及 到一个β珠蛋白基因缺陷。目前国内β地贫基因 检测多采用多重 PCR 体系扩增结合膜反向杂交技 术,检测中国人群的8个常见位点和9个少见位 点突变,覆盖了99%的常见β地贫基因突变。对 于大片段缺失和重复的β地贫基因位点或罕见点 突变,必需通过其它检测技术,如多重连接依赖 性探针扩增技术或 Sanger 测序 [9-10]。但这些检测技 术要求高,仪器昂贵,结果判读难度大,限制了 其在基层医疗单位的应用。初生新生儿 HbF (α,γ,) 约占 70%、HbA (α₂β₂) 约 30%、HbA₂ (α₂δ₂) 不 到 1%; 随着胎龄增加, β 肽链合成增加、γ 肽链 合成减少, 因此 HbA 含量逐渐增加、HbF 逐渐减 少。Mantikou^[7]、周曼等^[8]研究指出,因 HbA 含量 与出生胎龄相关, 早产儿进行β地贫筛查时应使 用相应胎龄的 HbA 切值 [11]。足月新生儿 HbA 的含 量相对稳定,采用 HbA 进行 β 地贫筛查发现:携 带β地贫基因的足月新生儿HbA水平低于正常新 生儿[7,12-13]。本研究携带β地贫基因的足月新生儿 HbA 含量也减低,提示 HbA 可能作为足月新生儿 β地贫基因携带的筛查指标。

有研究^[14]认为 HbA₂/HbA 用于新生儿β地 贫基因携带筛查可提高灵敏度。本研究发现,HbA₂不为0者,HbA 与 HbA₂/HbA 联合对β地 贫基因携带诊断的 AUC 更大,提示 HbA₂/HbA 用于新生儿β地贫基因携带筛查可提高灵敏度,与文献相符。而且本研究进一步得出对于 HbA₂为0者,HbA 为 11.6% 时对β地贫基因携带诊断的灵敏度为 85.81%、特异度 79.82%;HbA₂ 不为 0

者, HbA (cut-off 16.1%~22.0%) 联合 HbA₂/HbA (cut-off >1.4) 对 β 地贫基因携带诊断的灵敏度达 91.38%、特异度 91.89%。

综上, HbA 及 HbA₂/HbA 是筛查足月新生儿 β 地贫基因携带的有效指标, 但要实现其临床应用 尚需要进一步开展多中心大样本研究。

「参考文献]

- [1] Xu XM, Zhou YQ, Luo GX, et al. The prevalence and spectrum of α and β thalassaemia in Guangdong province: implications for the future health burden and population screening[J]. J Clin Pathol, 2004, 57(5): 517-522.
- [2] 蔡稔, 李莉艳, 梁昕, 等. 柳州市城镇人群 α 和 β 地中海贫血的发生率调查和基因型鉴定 [J]. 中华流行病学杂志, 2002, 23(4): 281-285.
- [3] 王偲颖,方星,韩媛媛,等.脐血红细胞参数 MCV 和 HbA 定量对新生儿β-地中海贫血筛查的意义 [J]. 中国妇幼保健, 2016, 31(22): 4803-4805.
- [4] 林乘龙, 葛艳芬, 王景健, 等. 不同孕周胎儿脐血血红蛋白 A 相对含量比较 [J]. 中国妇幼保健, 2017, 32(12): 2687-2689.
- [5] 万志丹, 黄湘, 钟裕恒, 等. 滤纸干血片毛细管电泳技术检测 HbA 在筛查新生儿β- 地中海贫血中的应用价值 [J]. 检验 医学, 2017, 32(12): 1128-1131.
- [6] 郭浩, 杜丽, 唐斌, 等. 脐血血红蛋白电泳在新生儿地中海贫血筛查中的应用 [J]. 实用医学杂志, 2014, 30(12): 1953-1955.
- [7] Mantikou E, Arkesteijn SG, Beckhoven van JM, et al. A brief review onnewborn screening methods for hemoglobinopathies and preliminary results selecting beta thalassemia carriers at birth by quantitative estimation of the HbA fraction[J]. Clin Biochem, 2009, 42(8): 1780-1785.
- [8] 周曼,刘启英,赵钿,等.不同孕周新生儿脐血血红蛋白电泳结果分析[J].天津医药,2013,41(4):307-309.
- [9] 郝颖,徐晓昕,徐志勇,等.多重连接依赖性探针扩增技术 在α地中海贫血产前诊断中的应用[J].中华医学遗传学志, 2015, 32(5): 683-686.
- [10] Kubikova N, Babariya D, Sarasa J, et al. Clinical application of a protocol based on universal next-generation sequencing for the diagnosis of beta-thalassaemia and sickle cell anaemia in preimplantation embryos[J]. Reprod Biomed Online, 2018, 37(2): 136-144.
- [11] 杨金玲,陈大宇,谭建强,等.早产儿β地中海贫血筛查分析[J].中国儿童保健杂志,2018,26(5):468-471.
- [12] Giordano PC. Newborn screening for hemoglobinopathies using capillary electrophoresis[J]. Methods Mol Biol, 2013, 919: 131-145
- 13] Mantikou E, Harteveld CL, Giordano PC. Newborn screening for hemoglobinopathies using capillary electrophresis technology: Testing the capillarys neonat fast Hb device[J]. Clin Biochem, 2010, 43(16-17): 1345-1350.
- [14] 黄烁丹, 张惠琴, 邹婕, 等. 新生儿干血斑 β 地中海贫血筛查方法的研究 [J]. 中国实验诊断学, 2015, 19(4): 582-586.

(本文编辑: 俞燕)