Abstract:OBJECTIVE: To study the level of brain-derived neurotrophic factor (BDNF) in the microenvironment of the neuron-astrocyte co-culture system by Mg2+-free-induced seizure-like discharge and analyze the source of BDNF. METHODS: Hippocampal neurons (N) of fetal rats and astrocytes (AST) of neonatal rats were purified and divided into four groups, included control N (Con N) group, Mg2+-free treated N (Mg2+-free N) group, control N+AST co-culture (Con N+AST) group and Mg2+-free treated N+AST co-culture (Mg2+-free N+AST) group. The Mg2+-free treated groups were exposed to Mg2+-free media for 3 hrs to induce a repeated spontaneous seizure-like discharge. The level of BDNF in each group at different time points was measured using ELISA. RESULTS: The cellular morphous of AST changed in the Mg2+-free N+AST group at 48 hrs. Neuronal epileptiform activity was observed in the Mg2+-free media at 3 hrs, and continued to exist until the microenviornment returned to normal for 72 hrs. The BDNF level increased at 24 hrs and 48 hrs in the Con N+AST group compared with the control N group (P<0.05). Compared with Con N+AST group, BDNF level increased at 12, 24 and 48 hrs in the Mg2+-free N+AST group, especially at 12 and 24 hrs (P<0.01). There were no significant differences in the level of BDNF between the Con and Mg2+-free N groups. Compared with Mg2+-free N group, BDNF level increased at 24 hrs in the Mg2+-free N+AST group (P<0.05). CONCLUSIONS: The results of the experiment suggest that BDNF in the Con N+AST group might be excreted from both N and AST, but chiefly from N. Activated AST may be the main source for increasing BDNF in the Mg2+-free N+AST group.