Abstract:Objective To study the effect of PR-957 on the formation of A1 reactive astrocytes. Methods The cerebral cortices of 1-day-old female rats were obtained and cultured for primary astrocytes. These cells were divided into 3 groups:control, lipopolysaccharide (LPS), and LPS+PR-957. The LPS group was treated with LPS (at a concentration of 5 μmol/L) for 48 hours; the LPS+PR-957 group was treated with PR-957 (at a final concentration of 200 nmol/L) for 1 hour and then LPS for 48 hours. Enzyme-linked immunosorbent assay was used to determine the expression of complement 3 (C3, a marker for A1 reactive astrocytes) and tumor necrosis factor alpha (TNF-α). Quantitative real-time PCR was used to determine the relative mRNA expression of glypican-6 (GPC6), SPARC-like 1 (SPARCL1), and lipocalin-2 (LCN2). All the above experiments were repeated three times independently. Results C3 expression was almost not observed in the control group, but was observed in both the LPS group and the LPS+PR-957 group, with significantly lower expression observed in the LPS+PR-957 group (P < 0.05). The expression of TNF-α was consistent with that of C3. Compared with the control group, the LPS and the PS+PR-957 groups had significantly reduced mRNA expression levels of GPC6 and SPARCL1 but significantly increased mRNA expression level of LCN2 (P < 0.001). Compared with the LPS group, the LPS+PR-957 group had significantly increased mRNA expression levels of GPC6 and SPARCL1 but significantly reduced mRNA expression level of LCN2 (P < 0.001). Conclusions LPS can induce the transformation from astrocytes to A1 reactive astrocytes, and PR-957 can inhibit the formation of LPSinduced A1 reactive astrocytes.