Effect of hepatocyte growth factor on mice with hypoxic pulmonary arterial hypertension: a preliminary study
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To study the association between hepatocyte growth factor (HGF) and treatment response in mice with hypoxic pulmonary arterial hypertension (HPAH) and the possibility of HGF as a new targeted drug for HPAH. Methods After successful modeling, the HPAH model mice were randomly divided into two groups: HPAH group and HGF treatment group (tail vein injection of recombinant mouse HGF 1 mg/kg), with 10 mice in each group. Ten normal mice were used as the control group. After 5 weeks, echocardiography was used to measure tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio; the Griess method was used to measure the content of nitric oxide in serum; ELISA was used to measure the serum level of endothelin-1; transmission electron microscopy was used to observe changes in the ultrastructure of pulmonary artery. Results Compared with the HGF treatment and normal control groups, the HPAH group had significantly higher tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio (P<0.05). The transmission electron microscopy showed that the HPAH group had massive destruction of vascular endothelial cells and disordered arrangement of the elastic membrane of arteriolar intima with rupture and loss. The structure of vascular endothelial cells was almost complete and the structure of arterial intima elastic membrane was almost normal in the HGF treatment group. Compared with the normal control and HGF treatment groups, the HPAH group had significantly higher serum levels of nitric oxide and endothelin-1 (P<0.05). Conclusions Increasing serum HGF level can alleviate the impact of HPAH on the cardiovascular system of mice, possibly by repairing endothelial cell injury, improving vascular remodeling, and restoring the normal vasomotor function of pulmonary vessels.

    Reference
    Related
    Cited by
Get Citation

唐胡婷,母炜浩,向渝静,安永.肝细胞生长因子对低氧性肺动脉高压小鼠影响的初步研究[J].中国当代儿科杂志英文版,2022,(8):936-941

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 22,2022
  • Revised:
  • Adopted:
  • Online: August 02,2023
  • Published:
Article QR Code